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A simple method has been developed for numerically constructing orthogonal grids based 

on the tokamak poioidal flux surfaces. The poloidal flux surfaces form a natural set of coor- 
dinate lines for the study of transport in the tokamak scrape-off region, since the energy trans- 
port there ts mostly along the field lines contained within the flux surfaces. For a study of both 
the poloidal and perpendicular (radial) transport, a two-dimensional, preferably orthogonal, 
mesh is required. The need for a new mesh generating code arose from the requirements of the 
particular topology produced by the zeros in the poloidal field (x-points) and the consequent 
problems with the numbering of the mesh. ‘c 1987 Academx Press. Inc. 

A number of methods for constructing orthogonal meshes exist in the literature 
[I], but the available codes required a considerable amount of adaptation to our 
problem of constructing a correctly numbered mesh which encompasses the regions 
both inside and outside the separatrix (Fig. 1). In order to map simply the topology 
of Fig. 1 onto a two-dimensional FORTRAN array, we make a cut along the 
dashed line in the figure. In this way, we end up with a single computational region 
with four new artificial boundaries. In order to have the physics properly connec- 
ted, it is now necessary to ensure that the physical variables be continuous across 
these new boundaries. This can usually be accomplished with little difficulty. 

Using this approach, the mesh lines coinciding with the poloidal flux surfaces are 
numbered from left to right as indicated in Fig. I. The cuts in the mesh are used not 
only to make the addressing of the mesh variables simple, but it actually makes it 
easier to apply the sheath boundary conditions commonly used in the scrape-off 
modeling [2]. 

THE MESH GENERATION 

The first set of coordinate lines. The starting point for mesh generation is a set of 
poloidal flux values on a rectangular mesh, usually provided by an equilibrium 

125 
OO21-5991:ft? $3.00 

Coprnghr <g, 1957 by Academic Tresr, Inc. 
581 ‘73: l-9 All righrs of rsprcductian in any form resew4 



126 M. PETRAVIC 

FIG. 1. The poloidal magnetic flux contours, in a poloidal plane. for a tokamak with a single null 
divertor. The dashed line shows how the area has been cut into two regions. 

solver. The next step consists of numerically determining contours of constant flux. 
For this purpose the rectangular mesh is subdivided into triangles with a set of 
diagonal lines going through every point on the mesh. The contours are then 
obtained by interpolation between the corners of the triangles. An important prac- 
tical part of the procedure is that the mesh is separated into two regions by cutting 
and rejoining the flux contours as shown in Fig. 2. The line numbering also occurs 
here. A part of a contour which lies inside the separatrix is joined to a section of 
another contour outside the separatrix, i.e., contours 8 to 13. The straight-line 
connection between the two contours is later ignored by the mesh generator. 

The contour program defines a contour by means of an ordered discrete set of 
points lying on that contour. Next, these points are spline-fitted in a standard way; 
cubic splines are used. A small but practically important point is that in order to 
have single-valued functions, the contours have to be subdivided into segments, and 
each segment fitted separately in a different Cartesian coordinate system. Four 
systems are used in all with a common origin but rotated by 90” with respect to its 
neighboring systems. The spline fitting completes the definition. 
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FIG. 2. The first family of coordinate curves in the first region. Segments of the curt-es inside 3e 
separatria have been joined to the segments at the bottom of the picture to simpli!) the labeling, which is 
a&o indicated. 

The second set of coordinate lines. The second set, orthogonal to the first? is then 
constructed using a piecewise continuous set of circle segments which join at the 
points of intersection with the spiines. The method of finding a circle segment 
orthogonal to two adjoining splines is illustrated in Fig. 3. An auxiliary coordinate 
system is placed with its origin at the already determined point, (u,, uOj, of the 
mesh, and with its x-axis oriented along the tangent to the spline C,(U). The sptine 
C(U) is defined in the system 14, ~1. The same spline Z(U) when viewed from the x, ~3 
system will be named S(x). 

Next, we have to choose that circle, from all the circles orthogonal to .ZO at x = 0 
and 4’ =O, which intersects S(x) at the right angle. The requirement can be 
expressed through the three equations 

y-2 + fx - IQ2 = R’, (41 
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FIG. 3. The coordinate systems used in the construction of orthogonal trajectories, which are here 
arcs of circles. The curves labeled Z belong to the first family of coordinates. A circle is drawn from the 
origin of the moving system no, ~1~ to the curve L. 

where (1) is the equation for the family of circles orthogonal to the x-axis at x = 0, 
(2) is the orthogonal condition for the circle J(X), and the spline S(x) which must 
be satisfied at y(x) = S(X) is given by (3). 

Differentiating (1 ), we find 

J’J”= R-x, (4) 

and upon eliminating R by combining (1) and (4) we finally arrive at the condition 

(s~-x2)sI+2sx=o, (5) 
where we have also substituted S for y. Equation (5) can now be solved iteratively 
using Newton’s method 

x 
2S(x,,) x, + [S2(x,) --xi] S’(x,) 

II+1 =x"-2s(x,){1+ [S'(x,)]'} + [S2(X,J-Xp7yX,,)' (6) 

where S, s’ and S” are evaluated at x = x,. The only problem is that S is not 
defined in the x, y system; it is only known as Z(U) in the IA, v system. Therefore, in 
order to find S(x,), we again use Newton’s rule to find the intersection of a straight 
line through (u,, v,), and parallel to the ),-axis, with C(U) in the U, t’ system. This 
straight line (Fig. 3) is given by 

v-VI= - &(U-4L 
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where ~1~ = z4* + x,, cos c( and u1 = z+, + x, sin CL Having found the value of C(.U,~) at 
the point of intersection, S(x,) can be easily obtained by transforming [u,, Z(u,)] 
into the x, J system. 

This simple method has proven very effective for constructing useful orthogonal 
meshes in the diverted tokamak magnetic geometry. The resulting system is, of 
course, not orthogonal at the x-point, but this presents no problem since the 
problem variables are not evaluated at the corners of the computational volumes. A 
mesh constructed in this way for the purpose of modeling the D-III-D experiment 
at GA Technologies (San Diego, CA) is shown in Fig. 4. For clarity, a mesh with a 
reduced number of mesh points is shown. The actual mesh is finer, and is also trim- 
med to conform to the walls which, in general, cut across the mesh at an angle. 
However, the greater part of the vacuum wall conforms closely to the flux surfaces, 
or the outermost contour. It should be obvious that for our problem it was n.ot 
possible to also use the wall as one coordinate of the system. 

FIG. 4. A subset of the orthogonal system constructed for the simulation of the D-III-D experiment. 
A much finer work tailored to lit the vacuum walls, which is actually used in the simulation, could not 
be shown because of the lack of resolution. 
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SUMMARY 

Our method falls in the category of orthogonal trajectory methods [3]~ These 
methods in general seek to find pairs of points on two adjoining coordinate curves 
which are in orthogonal correspondence. With such an approach there is no unique 
answer and assumptions have to be made about the missing continuum of curves 
[4] in order to make the solution unique. We use instead what appears to be a 
more straightforward method which yields a unique answer without additional 
conditions and uses circle segments with a continuous first derivative to construct 
the second family of coordinate curves. The implementation of the method is 
particularly simple if a Cartesian coordinate system can be found in which the first 
family of coordinate curves can be represented by single-valued functions. Though 
this method was derived for a particular purpose, it should prove useful in a more 
general range of applications. 
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